
Word Representation
Large Language Models: Introduction and Recent Advances

ELL881 · AIL821

Tanmoy Chakraborty
Associate Professor, IIT Delhi

https://tanmoychak.com/

Slides are adopted from the Stanford course ‘NLP with DL’ by C. Manning & the book ‘Speech and Language Processing’ by D. Jurafsky and J. H. Martin

https://tanmoychak.com/

The systems generate solution candidates
and then proves or disproves them by
searching over possible proof steps in
Lean, a functional programming language.

Gemini model is used to automatically
translate natural language problem
statements into formal statements.

Shows great promise in developing AI
systems like Gemini with better
capabilities in math and broader

reasoning.

Google DeepMind’s AlphaProof
and AlphaGeometry 2

achieve silver-medal standard solving IMO
problems !

https://deepmind.google/discover
/blog/ai-solves-imo-problems-at-

silver-medal-level/

Released on
July 25, 2024

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

The systems generate solution candidates
and then proves or disproves them by
searching over possible proof steps in
Lean, a functional programming language.

Gemini model is used to automatically
translate natural language problem
statements into formal statements.

Shows great promise in developing AI
systems like Gemini with better
capabilities in math and broader

reasoning.

Google DeepMind’s AlphaProof
and AlphaGeometry 2

achieves silver-medal standard solving IMO
problems !

https://deepmind.google/discover
/blog/ai-solves-imo-problems-at-

silver-medal-level/

Released on
July 25, 2024

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

‘Meaning’ of a Word
To perform language modelling effectively, it is essential for the model to somehow capture
the meaning of each word.

Definition: meaning (Webster dictionary)
• The idea that is represented by a word, phrase, etc.
• The idea that a person wants to express by using words, signs, etc.
• The idea that is expressed in a work of writing, art, etc.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Need for Word Representation
For language modeling:

• We need effective representation of words
• The representation must somehow encapsulate the word meaning

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Representing Words as Discrete Symbols
In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Problem with Words as Discrete Symbols
Example: in web search, if a user searches for “Delhi motel”, we would also like to match

documents containing “Delhi hotel”

But:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

• These two vectors are orthogonal

• There is no natural notion of similarity for one-hot vectors!

• Solution:
• Could try to rely on WordNet’s list of synonyms to get similarity?

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Use Existing Thesauri or Ontologies like WordNet
WordNet 3.0

• A hierarchically organized lexical database

• Online thesaurus + aspects of a dictionary
• Some other languages available or under development

• (Arabic, Finnish, German, Portuguese…)

Category Unique Strings

Noun 117,798

Verb 11,529

Adjective 22,479

Adverb 4,481

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Use Existing Thesauri or Ontologies like WordNet
How is “sense” defined in WordNet?

• Using the synset (synonym set), the set of near-synonyms, instantiates a sense or
concept, with a gloss.

• Example:
• chump as a noun with the gloss:

“a person who is gullible and easy to take advantage of”
• This sense of “chump” is shared by 9 words:

chump1, fool2, gull1, mark9, patsy1, fall guy1, sucker1, soft touch1, mug2

• Each of these senses have this same gloss
• (Not every sense; sense 2 of gull is the aquatic bird)

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Use Existing Thesauri or Ontologies like WordNet
• Example:

Senses of ‘bass’:

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Drawbacks of Thesaurus-based Approaches
• A useful resource but missing nuance

• e.g., “proficient” is listed as a synonym for “good”: this is only correct in some contexts
• Also, WordNet lists offensive synonyms in some synonym sets without any coverage of the

connotations or appropriateness of words

• Missing new meanings of words
• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
• Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Representing Words by Their Context
Distributional semantics: A word’s meaning is given by the words that frequently appear
close-by.

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).
• We can have many contexts of w to build up a representation of w

• …government debt problems turning into banking crises as happened in 2009…
• …saying that Europe needs unified banking regulation to replace the hodgepodge…
• …India has just given its banking system a shot in the arm…

• These context words will represent banking

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Count-based Methods

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Use Co-occurrences for Word Similarity
The Term-Context matrix (or, word-word matrix)
• Each cell: number of times the row (target) word and the column (context) word co-occur

in some context in the corpus
• Generally, smaller contexts are used, like:

• Paragraph
• Window of 10 words

• Each word is a count vector in ℕv: a row below (V: size of vocabulary)
aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0
Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Sample Contexts: 20 words (Brown corpus)
• equal amount of sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a

pinch each of clove and nutmeg,

• on board for their enjoyment. Cautiously she sampled her first pineapple and another
fruit whose taste she likened to that of

• of a recursive type well suited to programming on the digital computer. In finding the
optimal R-stage policy from that of

• substantially affect commerce, for the purpose of gathering data and information
necessary for the study authorized in the first section of this

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Use Co-occurrences for Word Similarity
The Term-Context matrix (or, word-word matrix)
• Two words are similar in meaning if their context vectors are similar

aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Should We Use Raw Counts?
• Raw word frequency is not a great measure of association between words

• It’s very skewed
• “the” and “of” are very frequent, but maybe not the most discriminative

• We’d rather have a measure that asks whether a context word is particularly informative
about the target word.

• For the term-document matrix:
• We generally use tf-idf instead of raw term counts.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Term Frequency (tf)

tft,d = count(t,d)

Instead of using raw count, we squash a bit:

tft,d = log10(count(t,d)+1)

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Document Frequency (df)
dft is the number of documents t occurs in.
(note this is NOT collection frequency: total count across all documents)

Example: "Romeo" is very distinctive for one Shakespeare play:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Inverse Document Frequency (idf)

N is the total number of documents
in the collection

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

What is a Document?
• Could be a play or a Wikipedia article

• But for the purposes of tf-idf, documents can be anything; we often call each paragraph a
document!

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Final tf-idf Weighted Value for a Word

tf-idf

Raw counts

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Drawbacks of Co-occurrence Matrix Approach

• Quadratic space needed

• Relative position and order of words not considered

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Low Dimensional Vectors
• Store only “important” information in fixed, low dimensional vector.

• Singular Value Decomposition (SVD) on co-occurrence matrix
• ෠𝑋 is the best rank k approximation to X , in terms of least squares
• Motel = [0.286, 0.792, -0.177, -0.107, 0.109, -0.542, 0.349, 0.271]

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Drawbacks of SVD-based Approach

• Computational cost scales quadratically for n x m matrix: 𝑂(𝑚𝑛2) flops (when n<m)

• Hard to incorporate new words or documents

• Does not consider order of words

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Prediction-based Methods

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Word Embedding

• Dense vector
• Helps in learning less parameters
• May generalize better
• Can capture synonyms better

• car and automobile are synonyms; but have distinct dimensions
• A word with car as a neighbor and a word with automobile as a neighbor should

be similar, but are not

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Represent The Meaning of Word: Word2vec
Two basic neural network models:
• Continuous Bag of Word (CBOW): use a window of word to predict the middle word

• Skip-gram (SG): use a word to predict the surrounding words in window

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Word2vec
• Instead of counting how often each word w occurs near “apricot”

• Train a classifier on a binary prediction task:
• Is w likely to show up near "apricot"?

• We don’t actually care about this task
• But we'll take the learned classifier weights as the word embeddings

• Big idea: Self-supervision
• A word c that occurs near apricot in the corpus cats as the gold "correct answer" for supervised

learning
• No need for human labels
• Bengio et al. (2003); Collobert et al. (2011)

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Approach: Predict if Candidate Word ‘c’ is a "neighbor"
1. Treat the target word t and a neighboring context word c as positive examples.

2. Randomly sample other words in the lexicon to get negative examples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the learned weights as the embeddings

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Skip-Gram Training Data
Assume a +/- 2 word window, given training sentence:

… lemon, a [tablespoon of apricot jam, a] pinch …
targetc1 c2 c3 c4

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Skip-Gram Classifier
(assuming a +/- 2 word window)

… lemon, a [tablespoon of apricot jam, a] pinch …

• Goal: Train a classifier, that, given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

…
assigns each pair a probability:

P(+ | w, c)
P(− | w, c) = 1 − P(+ | w, c)

targetc1 c2 c3 c4

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Similarity is Computed Using Dot Product

• Remember: Two vectors are similar if they have a high dot product

• Cosine is just a normalized dot product

• Similarity(w , c) ∝w ∙ c

• We’ll need to normalize to get a probability
• Cosine isn't a probability either

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Turning Dot Products into Probabilities
• Sim(w , c) ≈ w ∙ c

• To turn this into a probability
• We'll use the sigmoid function, as in logistic regression:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

How Skip-gram Classifier computes P(+|w, c)

• This is for one context word, but we have lots of context words.
• We'll assume independence and just multiply them:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Skip-gram Classifier: Summary
• A probabilistic classifier, given

• a test target word w
• its context window of L words c1:L

• Estimates probability that w occurs in this window based on similarity of w (embeddings)
to c1:L (embeddings).

• To compute this, we just need embeddings for all the words.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

The Embeddings We’ll Need: A Set for w, A Set for c

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Word2vec: Learning the
Embeddings

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Skip-Gram Training Data
Assume a +/- 2 word window, given training sentence:

… lemon, a [tablespoon of apricot jam, a] pinch …
targetc1 c2 c3 c4

For each positive example we'll
grab k negative examples, sampling
by frequency

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Skip-Gram Training Data
Assume a +/- 2 word window, given training sentence:

… lemon, a [tablespoon of apricot jam, a] pinch …
targetc1 c2 c3 c4

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Choosing Negative Examples

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Word2vec: How to Learn Word Vectors
• Given the set of positive and negative training instances, and an initial set of embedding

vectors

• The goal of learning is to adjust those word vectors such that we:
• Maximize the similarity of the target word, context word pairs (w , cpos) drawn from

the positive data
• Minimize the similarity of the (w , cneg) pairs drawn from the negative data.

46

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Loss Function for One w With cpos , cneg1 ...cnegk

• Maximize the similarity of the target with the actual context words, and minimize the
similarity of the target with the k negative sampled non-neighbor words.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Learning the Classifier
• How to learn?

• Stochastic gradient descent!

• We’ll adjust the word weights to
• make the positive pairs more likely
• and the negative pairs less likely,
over the entire training set.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Reminder: Gradient Descent
• At each step

• Direction: We move in the reverse direction from the gradient of the loss function

• Magnitude: we move the value of this gradient 𝑑
𝑑𝑤

𝐿(𝑓 𝑥;𝑤 , 𝑦) weighted by a learning rate η

• Higher learning rate means move w faster

𝑤𝑡+1 = 𝑤𝑡 − 𝜂
𝑑

𝑑𝑤
𝐿(𝑓 𝑥;𝑤 , 𝑦)

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

The Derivatives of The Loss Function

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Update Equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Two Sets of Embeddings
Skip-gram learns two sets of embeddings:

1. Target embeddings matrix W
2. Context embedding matrix C

It's common to just add them together, representing i-th word as the vector W[i] + C[i]

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Summary: How to Learn Word2vec (Skip-gram)
Embeddings
• Start with V random d-dimensional vectors as initial embeddings

• Train a classifier based on embedding similarity
• Take a corpus and take pairs of words that co-occur as positive examples
• Take pairs of words that don't co-occur as negative examples
• Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier

performance
• Throw away the classifier code and keep the embeddings

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Some Tricks
• Sub-sampling Frequent Words

54

There are two “problems” with common words like “the”:

1. When looking at word pairs, (“fox”, “the”) doesn’t tell us
much about the meaning of “fox”. “the” appears in the
context of pretty much every word.

2. We will have many more samples of (“the”, …) than we
need to learn a good vector for “the”.

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Some Tricks
• Sub-sampling Frequent Words

55

There are two “problems” with common words like “the”:

1. When looking at word pairs, (“fox”, “the”) doesn’t tell us
much about the meaning of “fox”. “the” appears in the
context of pretty much every word.

2. We will have many more samples of (“the”, …) than we
need to learn a good vector for “the”.

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Sub-sampling Frequent Words
• If we have a window size of 10, and we remove a specific instance of “the” from our text:

• As we train on the remaining words, “the” will not appear in any of their context windows.
• We’ll have 10 fewer training samples where “the” is the input word.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Some Interesting Results

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Word Analogies

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Problems of Word2vec
The cat sat on the mat

Word2vec can’t capture the information like:
• Is “The” a special context of the words “cat” and “mat”?

Or
• Is “The” just a stopword?

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Problems of Word2vec
• Word2Vec can’t handle unknown words – words appearing in a test corpus but were

unseen in the training corpus

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

fasttext embedding – Subword embedding
• Each word is represented by itself plus a bag of constituent n-grams, with special

boundary symbols ‘<’ and ‘>’ added to each word.

• For example, with n = 3 the word where would be represented by the sequence plus the
character n-grams:

• Skip-gram is learned for each constituent n-gram
• where is represented by the sum of all of the embeddings of its constituent n-grams.
• Unknown words can then be presented only by the sum of the constituent n-grams

where, <wh, whe, her, ere, re>

https://fasttext.cc/

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

	Default Section
	Slide 1: Large Language Models: Introduction and Recent Advances ELL881 · AIL821
	Slide 2
	Slide 3
	Slide 4: ‘Meaning’ of a Word
	Slide 5: Need for Word Representation
	Slide 6: Representing Words as Discrete Symbols
	Slide 7: Problem with Words as Discrete Symbols
	Slide 8: Use Existing Thesauri or Ontologies like WordNet
	Slide 9: Use Existing Thesauri or Ontologies like WordNet
	Slide 10: Use Existing Thesauri or Ontologies like WordNet
	Slide 11: Drawbacks of Thesaurus-based Approaches
	Slide 12: Representing Words by Their Context
	Slide 13: Count-based Methods
	Slide 14: Use Co-occurrences for Word Similarity
	Slide 15: Sample Contexts: 20 words (Brown corpus)
	Slide 16: Use Co-occurrences for Word Similarity
	Slide 21: Should We Use Raw Counts?
	Slide 22: Term Frequency (tf)
	Slide 23: Document Frequency (df)
	Slide 24: Inverse Document Frequency (idf)
	Slide 25: What is a Document?
	Slide 26: Final tf-idf Weighted Value for a Word
	Slide 27: Drawbacks of Co-occurrence Matrix Approach
	Slide 28: Low Dimensional Vectors
	Slide 29: Drawbacks of SVD-based Approach
	Slide 30: Prediction-based Methods
	Slide 31: Word Embedding
	Slide 32: Represent The Meaning of Word: Word2vec
	Slide 33: Word2vec
	Slide 34: Approach: Predict if Candidate Word ‘c’ is a "neighbor"
	Slide 35: Skip-Gram Training Data
	Slide 36: Skip-Gram Classifier
	Slide 37: Similarity is Computed Using Dot Product
	Slide 38: Turning Dot Products into Probabilities
	Slide 39: How Skip-gram Classifier computes P(+|w, c)
	Slide 40: Skip-gram Classifier: Summary
	Slide 41: The Embeddings We’ll Need: A Set for w, A Set for c
	Slide 42: Word2vec: Learning the Embeddings
	Slide 43: Skip-Gram Training Data
	Slide 44: Skip-Gram Training Data
	Slide 45: Choosing Negative Examples
	Slide 46: Word2vec: How to Learn Word Vectors
	Slide 47: Loss Function for One w With cpos , cneg1 ...cnegk
	Slide 48: Learning the Classifier
	Slide 49: Reminder: Gradient Descent
	Slide 50: The Derivatives of The Loss Function
	Slide 51: Update Equation in SGD
	Slide 52: Two Sets of Embeddings
	Slide 53: Summary: How to Learn Word2vec (Skip-gram) Embeddings
	Slide 54: Some Tricks
	Slide 55: Some Tricks
	Slide 56: Sub-sampling Frequent Words
	Slide 57: Some Interesting Results
	Slide 58: Word Analogies
	Slide 59: Problems of Word2vec
	Slide 60: Problems of Word2vec
	Slide 61: fasttext embedding – Subword embedding

