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‘Meaning’ of a Word
To perform language modelling effectively, it is essential for the model to somehow capture 
the meaning of each word.

Definition: meaning (Webster dictionary)
• The idea that is represented by a word, phrase, etc.
• The idea that a person wants to express by using words, signs, etc.
• The idea that is expressed in a work of writing, art, etc.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Need for Word Representation
For language modeling:

• We need effective representation of words
• The representation must somehow encapsulate the word meaning

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Representing Words as Discrete Symbols
In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Problem with Words as Discrete Symbols
Example: in web search, if a user searches for “Delhi motel”, we would also like to match

documents containing “Delhi hotel”

But:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

• These two vectors are orthogonal

• There is no natural notion of similarity for one-hot vectors!

• Solution:
• Could try to rely on WordNet’s list of synonyms to get similarity?

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Use Existing Thesauri or Ontologies like WordNet
WordNet 3.0

• A hierarchically organized lexical database

• Online thesaurus + aspects of a dictionary
• Some other languages available or under development

• (Arabic, Finnish, German, Portuguese…)

Category Unique Strings

Noun 117,798

Verb 11,529

Adjective 22,479

Adverb 4,481

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Use Existing Thesauri or Ontologies like WordNet
How is “sense” defined in WordNet?

• Using the synset (synonym set), the set of near-synonyms, instantiates a sense or 
concept, with a gloss.

• Example: 
• chump as a noun with the gloss:

“a person who is gullible and easy to take advantage of”
• This sense of “chump” is shared by 9 words:

chump1, fool2, gull1, mark9, patsy1, fall guy1, sucker1, soft touch1, mug2

• Each of these senses have this same gloss
• (Not every sense; sense 2 of gull is the aquatic bird)

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Use Existing Thesauri or Ontologies like WordNet
• Example:

Senses of ‘bass’:

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Drawbacks of Thesaurus-based Approaches
• A useful resource but missing nuance

• e.g., “proficient” is listed as a synonym for “good”: this is only correct in some contexts
• Also, WordNet lists offensive synonyms in some synonym sets without any coverage of the 

connotations or appropriateness of words

• Missing new meanings of words
• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
• Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Representing Words by Their Context
Distributional semantics: A word’s meaning is given by the words that frequently appear 
close-by.

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• When a word w appears in a text, its context is the set of words that appear nearby 
(within a fixed-size window).
• We can have many contexts of w to build up a representation of w

• …government debt problems turning into banking crises as happened in 2009…
• …saying that Europe needs unified banking regulation to replace the hodgepodge…
• …India has just given its banking system a shot in the arm…

• These context words will represent banking

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Count-based Methods

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Use Co-occurrences for Word Similarity
The Term-Context matrix (or, word-word matrix)
• Each cell: number of times the row (target) word and the column (context) word co-occur 

in some context in the corpus
• Generally, smaller contexts are used, like:

• Paragraph
• Window of 10 words

• Each word is a count vector in ℕv: a row below (V: size of vocabulary)
aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0
Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Sample Contexts: 20 words (Brown corpus)  
• equal amount of sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a 

pinch each of clove and nutmeg,

• on board for their enjoyment. Cautiously she sampled her first pineapple and another 
fruit whose taste she likened to that of

• of a recursive type well suited to programming on the digital computer. In finding the 
optimal R-stage policy from that of

• substantially affect commerce, for the purpose of gathering data and information
necessary for the study authorized in the first section of this

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Use Co-occurrences for Word Similarity
The Term-Context matrix (or, word-word matrix)
• Two words are similar in meaning if their context vectors are similar

aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Should We Use Raw Counts?
• Raw word frequency is not a great measure of association between words

• It’s very skewed
• “the” and “of” are very frequent, but maybe not the most discriminative

• We’d rather have a measure that asks whether a context word is particularly informative 
about the target word.

• For the term-document matrix:
• We generally use tf-idf instead of raw term counts.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Term Frequency (tf)

tft,d = count(t,d)

Instead of using raw count, we squash a bit:

tft,d = log10(count(t,d)+1) 

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Document Frequency (df)
dft is the number of documents t occurs in.
(note this is NOT collection frequency: total count across all documents)

Example: "Romeo" is very distinctive for one Shakespeare play:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Inverse Document Frequency (idf)

N is the total number of documents 
in the collection

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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What is a Document?
• Could be a play or a Wikipedia article

• But for the purposes of tf-idf, documents can be anything; we often call each paragraph a 
document!

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Final tf-idf Weighted Value for a Word

tf-idf

Raw counts

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Drawbacks of Co-occurrence Matrix Approach

• Quadratic space needed

• Relative position and order of words not considered

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Low Dimensional Vectors
• Store only “important” information in fixed, low dimensional vector.

• Singular Value Decomposition (SVD) on co-occurrence matrix
• ෠𝑋 is the best rank k approximation to X , in terms of least squares
• Motel = [0.286, 0.792, -0.177, -0.107, 0.109,  -0.542, 0.349, 0.271]

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Drawbacks of SVD-based Approach

• Computational cost scales quadratically for n x m matrix: 𝑂(𝑚𝑛2) flops (when n<m)

• Hard to incorporate new words or documents

• Does not consider order of words

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Prediction-based Methods

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Word Embedding

• Dense vector
• Helps in learning less parameters
• May generalize better
• Can capture synonyms better

• car and automobile are synonyms; but have distinct dimensions
• A word with car as a neighbor and a word with automobile as a neighbor should 

be similar, but are not

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Represent The Meaning of Word: Word2vec
Two basic neural network models:
• Continuous Bag of Word (CBOW): use a window of word to predict the middle word

• Skip-gram (SG): use a word to predict the surrounding words in window

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Word2vec
• Instead of counting how often each word w occurs near “apricot”

• Train a classifier on a binary prediction task:
• Is w likely to show up near "apricot"?

• We don’t actually care about this task
• But we'll take the learned classifier weights as the word embeddings

• Big idea:  Self-supervision
• A word c that occurs near apricot in the corpus cats as the gold "correct answer" for supervised 

learning
• No need for human labels
• Bengio et al. (2003); Collobert et al. (2011) 

Adapted from NLP Lectures by Daniel Jurafsky

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Approach: Predict if Candidate Word ‘c’ is a "neighbor"
1. Treat the target word t and a neighboring context word c as positive examples.

2. Randomly sample other words in the lexicon to get negative examples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the learned weights as the embeddings

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Skip-Gram Training Data
Assume a +/- 2 word window, given training sentence:

… lemon, a [ tablespoon of  apricot  jam,   a ]  pinch …
targetc1                     c2                c3   c4

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Skip-Gram Classifier
(assuming a +/- 2 word window)

… lemon, a [ tablespoon of  apricot  jam,   a ]  pinch …

• Goal: Train a classifier, that, given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

…
assigns each pair a probability:

P(+ | w, c) 
P(− | w, c) = 1 − P(+ | w, c) 

targetc1                     c2                c3   c4

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Similarity is Computed Using Dot Product

• Remember: Two vectors are similar if they have a high dot product

• Cosine is just a normalized dot product

• Similarity(w , c)  ∝w ∙ c

• We’ll need to normalize to get a probability
• Cosine isn't a probability either

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Turning Dot Products into Probabilities
• Sim(w , c) ≈ w ∙ c

• To turn this into a probability 
• We'll use the sigmoid function, as in logistic regression:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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How Skip-gram Classifier computes P(+|w, c) 

• This is for one context word, but we have lots of context words.
• We'll assume independence and just multiply them:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Skip-gram Classifier: Summary
• A probabilistic classifier, given 

• a test target word w 
• its context window of L words c1:L

• Estimates probability that w occurs in this window based on similarity of w (embeddings) 
to c1:L (embeddings).

• To compute this, we just need embeddings for all the words.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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The Embeddings We’ll Need: A Set for w, A Set for c

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Skip-Gram Training Data
Assume a +/- 2 word window, given training sentence:

… lemon, a [ tablespoon of  apricot  jam,   a ]  pinch …
targetc1                     c2                c3   c4

For each positive example we'll 
grab k negative examples, sampling 
by frequency

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Skip-Gram Training Data
Assume a +/- 2 word window, given training sentence:

… lemon, a [ tablespoon of  apricot  jam,   a ]  pinch …
targetc1                     c2                c3   c4
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Choosing Negative Examples

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Word2vec: How to Learn Word Vectors
• Given the set of positive and negative training instances, and an initial set of embedding 

vectors 

• The goal of learning is to adjust those word vectors such that we:
• Maximize the similarity of the target word, context word pairs (w , cpos) drawn from 

the positive data
• Minimize the similarity of the (w , cneg) pairs drawn from the negative data. 

46

https://www.lcs2.in/
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Loss Function for One w With cpos , cneg1 ...cnegk

• Maximize the similarity of the target with the actual context words, and minimize the 
similarity of the target with the k negative sampled non-neighbor words. 

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Learning the Classifier
• How to learn?

• Stochastic gradient descent!

• We’ll adjust the word weights to
• make the positive pairs more likely 
• and the negative pairs less likely, 
over the entire training set.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Tanmoy Chakraborty Tanmoy ChakrabortyLLMs: Introduction and Recent Advances

Reminder: Gradient Descent
• At each step

• Direction: We move in the reverse direction from the gradient of the loss function

• Magnitude: we move the value of this gradient 𝑑
𝑑𝑤

𝐿(𝑓 𝑥;𝑤 , 𝑦) weighted by a learning rate η

• Higher learning rate means move w faster

𝑤𝑡+1 = 𝑤𝑡 − 𝜂
𝑑

𝑑𝑤
𝐿(𝑓 𝑥;𝑤 , 𝑦)
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The Derivatives of The Loss Function
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Update Equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates
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Two Sets of Embeddings
Skip-gram learns two sets of embeddings:

1. Target embeddings matrix W
2. Context embedding matrix C 

It's common to just add them together, representing i-th word as the vector W[i] + C[i]

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
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Summary: How to Learn Word2vec (Skip-gram) 
Embeddings
• Start with V random d-dimensional vectors as initial embeddings

• Train a classifier based on embedding similarity
• Take a corpus and take pairs of words that co-occur as positive examples
• Take pairs of words that don't co-occur as negative examples
• Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier 

performance
• Throw away the classifier code and keep the embeddings

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
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Some Tricks 
• Sub-sampling Frequent Words

54

There are two “problems” with common words like “the”:

1. When looking at word pairs, (“fox”, “the”) doesn’t tell us 
much about the meaning of “fox”. “the” appears in the 
context of pretty much every word.

2. We will have many more samples of (“the”, …) than we 
need to learn a good vector for “the”.

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/
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Some Tricks 
• Sub-sampling Frequent Words

55

There are two “problems” with common words like “the”:

1. When looking at word pairs, (“fox”, “the”) doesn’t tell us 
much about the meaning of “fox”. “the” appears in the 
context of pretty much every word.

2. We will have many more samples of (“the”, …) than we 
need to learn a good vector for “the”.

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/
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Sub-sampling Frequent Words
• If we have a window size of 10, and we remove a specific instance of “the” from our text:

• As we train on the remaining words, “the” will not appear in any of their context windows.
• We’ll have 10 fewer training samples where “the” is the input word.
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Some Interesting Results
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Word Analogies
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Problems of Word2vec
The cat sat on the mat

Word2vec can’t capture the information like:
• Is “The” a special context of the words “cat” and “mat”?

Or
• Is “The” just a stopword? 

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
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Problems of Word2vec
• Word2Vec can’t handle unknown words – words appearing in a test corpus but were 

unseen in the training corpus

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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fasttext embedding – Subword embedding
• Each word is represented by itself plus a bag of constituent n-grams, with special 

boundary symbols ‘<’ and ‘>’ added to each word. 

• For example, with n = 3 the word where would be represented by the sequence plus the 
character n-grams: 

• Skip-gram is learned for each constituent n-gram
• where is represented by the sum of all of the embeddings of its constituent n-grams.
• Unknown words can then be presented only by the sum of the constituent n-grams

where, <wh, whe, her, ere, re> 

https://fasttext.cc/
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